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content

! Improbable outcomes do convey more information than probable outcomes

! Information content of a source by considering how many bits are needed to describe the 

outcome of an experiment 

! If we can show that we can compress data from a particular source into a file of L bits per source 

symbol and recover the data reliably,

! then we will say that the average information content of that source is at most L bits per 

symbol.
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! One way of measuring the information content of a random variable is simply to count 

the number of possible outcomes, |AX|. 

! If we gave a binary name to each outcome, the length of each name would be log2 |AX| 

bits, if |AX| happened to be a power of 2. 

! The raw bit content of X is 

! It is an additive quantity: the raw bit content of an ordered pair x, y, having |AX| |AY| possible 

outcomes, satisfies:

! Does not include any probabilistic element, and the encoding rule does not ‘compress’.

Simple data compression methods for |AX|

7

H0(X ) = log2 AX

H0(X ,Y ) = H0(X )+ H0(Y )



Data Compression -

! Could there be:

! a compressor that maps an outcome x to a binary code c(x), 

! a decompressor that maps c back to x, 

! such that every possible outcome is compressed into a binary code of length shorter than 

H0(X) bits? 

Compress all filles?

8



Data Compression -

! Could there be:

! a compressor that maps an outcome x to a binary code c(x), 

! a decompressor that maps c back to x, 

! such that every possible outcome is compressed into a binary code of length shorter than 

H0(X) bits? 

! No !! It is impossible to make a reversible compression program that reduces the size of all 

files
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! A lossy compressor compresses some files, but maps some files to the same encoding. 

! We’ll denote by δ the probability that the source string is one of the confusable files, so a lossy 

compressor has a probability δ of failure. 

! If δ can be made very small then a lossy compressor may be practically useful.  (images, videos, 

etc)

! A lossless compressor maps all files to different encodings

! if it shortens some files, it necessarily makes others longer. 

! We try to design the compressor so that the probability that a file is lengthened is very small, 

and the probability that it is shortened is large.

Ways for compressing files
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! Imagine comparing the information contents of two text files 

A. one in which all 128 ASCII characters are used with equal probability 

B. one in which the characters are used with their frequencies in English text 

! Can we define a measure of information content that distinguishes between these two files?

! The case B. contains less information per character because it is more predictable 

! How to use this knowledge?

! For instance just remove the less probable symbols to get a smaller alphabet

! For instance, guessing that the most infrequent characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, 

[, ], | } won’t occur ! — Reducing the alphabet by seventeen.

! δ - is the probability that there will be no name for an outcome x.

Take into account the probabilities of the different outcomes 
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are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
– thus losing the ability to encode some of the more improbable symbols –
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, [, ], | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter δ that describes the risk we are taking when
using this compression method: δ is the probability that there will be no
name for an outcome x.

Example 4.6. Let
AX = { a, b, c, d, e, f, g, h },

and PX = { 1
4 , 1

4 , 1
4 , 3

16 , 1
64 , 1

64 , 1
64 , 1

64 }.
(4.17)

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if we are willing
to run a risk of δ = 1/16 of not having a name for x, then we can get
by with four names – half as many names as are needed if every x ∈ AX

has a name.
Table 4.5 shows binary names that could be given to the different out-
comes in the cases δ = 0 and δ = 1/16. When δ = 0 we need 3 bits to
encode the outcome; when δ = 1/16 we need only 2 bits.

δ = 0

x c(x)

a 000
b 001
c 010
d 011
e 100
f 101
g 110
h 111

δ = 1/16

x c(x)

a 00
b 01
c 10
d 11
e −
f −
g −
h −

Table 4.5. Binary names for the
outcomes, for two failure
probabilities δ.

Let us now formalize this idea. To make a compression strategy with risk
δ, we make the smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x #∈ Sδ) ≤ δ. For each value of δ
we can then define a new measure of information content – the log of the size
of this smallest subset Sδ. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest δ-sufficient subset Sδ is the smallest subset of AX satisfying

P (x ∈ Sδ) ≥ 1 − δ. (4.18)

The subset Sδ can be constructed by ranking the elements of AX in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is ≥ (1−δ).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hδ(X) = log2 |Sδ|. (4.19)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all
x ∈ AX). [Caution: do not confuse H0(X) and Hδ(X) with the function H2(p)
displayed in figure 4.1.]

Figure 4.6 shows Hδ(X) for the ensemble of example 4.6 as a function of
δ.

H0(X ) = log2 AX = log2 8 = 3bits



Data Compression -

! Example:

! But P(x ∈ {a, b, c, d}) = 15/16.

Take into account the probabilities of the different outcomes 

12

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.3: Information content defined in terms of lossy compression 75

are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
– thus losing the ability to encode some of the more improbable symbols –
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, [, ], | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter δ that describes the risk we are taking when
using this compression method: δ is the probability that there will be no
name for an outcome x.

Example 4.6. Let
AX = { a, b, c, d, e, f, g, h },

and PX = { 1
4 , 1

4 , 1
4 , 3

16 , 1
64 , 1

64 , 1
64 , 1

64 }.
(4.17)

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if we are willing
to run a risk of δ = 1/16 of not having a name for x, then we can get
by with four names – half as many names as are needed if every x ∈ AX

has a name.
Table 4.5 shows binary names that could be given to the different out-
comes in the cases δ = 0 and δ = 1/16. When δ = 0 we need 3 bits to
encode the outcome; when δ = 1/16 we need only 2 bits.

δ = 0

x c(x)

a 000
b 001
c 010
d 011
e 100
f 101
g 110
h 111

δ = 1/16

x c(x)

a 00
b 01
c 10
d 11
e −
f −
g −
h −

Table 4.5. Binary names for the
outcomes, for two failure
probabilities δ.

Let us now formalize this idea. To make a compression strategy with risk
δ, we make the smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x #∈ Sδ) ≤ δ. For each value of δ
we can then define a new measure of information content – the log of the size
of this smallest subset Sδ. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest δ-sufficient subset Sδ is the smallest subset of AX satisfying

P (x ∈ Sδ) ≥ 1 − δ. (4.18)

The subset Sδ can be constructed by ranking the elements of AX in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is ≥ (1−δ).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hδ(X) = log2 |Sδ|. (4.19)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all
x ∈ AX). [Caution: do not confuse H0(X) and Hδ(X) with the function H2(p)
displayed in figure 4.1.]

Figure 4.6 shows Hδ(X) for the ensemble of example 4.6 as a function of
δ.

H0(X ) = log2 AX = log2 8 = 3bits
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! Example:

! But P(x ∈ {a, b, c, d}) = 15/16.

! So if we accept a risk δ = 1/16 of not having 

a symbol for x, we can consider codes only for 

each in {a, b, c, d} and so only requiring 2 bits.

Take into account the probabilities of the different outcomes 

12

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.3: Information content defined in terms of lossy compression 75

are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
– thus losing the ability to encode some of the more improbable symbols –
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, [, ], | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter δ that describes the risk we are taking when
using this compression method: δ is the probability that there will be no
name for an outcome x.

Example 4.6. Let
AX = { a, b, c, d, e, f, g, h },

and PX = { 1
4 , 1

4 , 1
4 , 3

16 , 1
64 , 1

64 , 1
64 , 1

64 }.
(4.17)

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if we are willing
to run a risk of δ = 1/16 of not having a name for x, then we can get
by with four names – half as many names as are needed if every x ∈ AX

has a name.
Table 4.5 shows binary names that could be given to the different out-
comes in the cases δ = 0 and δ = 1/16. When δ = 0 we need 3 bits to
encode the outcome; when δ = 1/16 we need only 2 bits.

δ = 0

x c(x)

a 000
b 001
c 010
d 011
e 100
f 101
g 110
h 111

δ = 1/16

x c(x)

a 00
b 01
c 10
d 11
e −
f −
g −
h −

Table 4.5. Binary names for the
outcomes, for two failure
probabilities δ.

Let us now formalize this idea. To make a compression strategy with risk
δ, we make the smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x #∈ Sδ) ≤ δ. For each value of δ
we can then define a new measure of information content – the log of the size
of this smallest subset Sδ. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest δ-sufficient subset Sδ is the smallest subset of AX satisfying

P (x ∈ Sδ) ≥ 1 − δ. (4.18)

The subset Sδ can be constructed by ranking the elements of AX in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is ≥ (1−δ).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hδ(X) = log2 |Sδ|. (4.19)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all
x ∈ AX). [Caution: do not confuse H0(X) and Hδ(X) with the function H2(p)
displayed in figure 4.1.]

Figure 4.6 shows Hδ(X) for the ensemble of example 4.6 as a function of
δ.

H0(X ) = log2 AX = log2 8 = 3bits
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are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
– thus losing the ability to encode some of the more improbable symbols –
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, [, ], | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter δ that describes the risk we are taking when
using this compression method: δ is the probability that there will be no
name for an outcome x.

Example 4.6. Let
AX = { a, b, c, d, e, f, g, h },

and PX = { 1
4 , 1

4 , 1
4 , 3

16 , 1
64 , 1

64 , 1
64 , 1

64 }.
(4.17)

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if we are willing
to run a risk of δ = 1/16 of not having a name for x, then we can get
by with four names – half as many names as are needed if every x ∈ AX

has a name.
Table 4.5 shows binary names that could be given to the different out-
comes in the cases δ = 0 and δ = 1/16. When δ = 0 we need 3 bits to
encode the outcome; when δ = 1/16 we need only 2 bits.

δ = 0

x c(x)

a 000
b 001
c 010
d 011
e 100
f 101
g 110
h 111

δ = 1/16

x c(x)

a 00
b 01
c 10
d 11
e −
f −
g −
h −

Table 4.5. Binary names for the
outcomes, for two failure
probabilities δ.

Let us now formalize this idea. To make a compression strategy with risk
δ, we make the smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x #∈ Sδ) ≤ δ. For each value of δ
we can then define a new measure of information content – the log of the size
of this smallest subset Sδ. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest δ-sufficient subset Sδ is the smallest subset of AX satisfying

P (x ∈ Sδ) ≥ 1 − δ. (4.18)

The subset Sδ can be constructed by ranking the elements of AX in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is ≥ (1−δ).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hδ(X) = log2 |Sδ|. (4.19)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all
x ∈ AX). [Caution: do not confuse H0(X) and Hδ(X) with the function H2(p)
displayed in figure 4.1.]

Figure 4.6 shows Hδ(X) for the ensemble of example 4.6 as a function of
δ.
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! The smallest δ-sufficient subset. 

! Sδ is the smallest subset of AX satisfying 

! The subset Sδ can be constructed by ranking the elements of AX in order of decreasing 

probability and adding successive elements starting from the most probable elements until 

the total probability is ≥ (1−δ). 

! We can make a data compression code by assigning a binary name to each element of the 

smallest sufficient subset 

Smallest δ-sufficient subset 

13

P(x ∈S∂ ) ≥1− ∂



Data Compression -

! The essential bit content of X is: 

! Note that H0(X) is the special case of H∂(X) with ∂ = 0 (if P(x) > 0 for all x ∈ AX).

Essential bit content of X 

14

H∂(X ) = log2 S∂
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are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
– thus losing the ability to encode some of the more improbable symbols –
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, [, ], | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter δ that describes the risk we are taking when
using this compression method: δ is the probability that there will be no
name for an outcome x.

Example 4.6. Let
AX = { a, b, c, d, e, f, g, h },

and PX = { 1
4 , 1

4 , 1
4 , 3

16 , 1
64 , 1

64 , 1
64 , 1

64 }.
(4.17)

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if we are willing
to run a risk of δ = 1/16 of not having a name for x, then we can get
by with four names – half as many names as are needed if every x ∈ AX

has a name.
Table 4.5 shows binary names that could be given to the different out-
comes in the cases δ = 0 and δ = 1/16. When δ = 0 we need 3 bits to
encode the outcome; when δ = 1/16 we need only 2 bits.

δ = 0

x c(x)

a 000
b 001
c 010
d 011
e 100
f 101
g 110
h 111

δ = 1/16

x c(x)

a 00
b 01
c 10
d 11
e −
f −
g −
h −

Table 4.5. Binary names for the
outcomes, for two failure
probabilities δ.

Let us now formalize this idea. To make a compression strategy with risk
δ, we make the smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x #∈ Sδ) ≤ δ. For each value of δ
we can then define a new measure of information content – the log of the size
of this smallest subset Sδ. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest δ-sufficient subset Sδ is the smallest subset of AX satisfying

P (x ∈ Sδ) ≥ 1 − δ. (4.18)

The subset Sδ can be constructed by ranking the elements of AX in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is ≥ (1−δ).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hδ(X) = log2 |Sδ|. (4.19)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all
x ∈ AX). [Caution: do not confuse H0(X) and Hδ(X) with the function H2(p)
displayed in figure 4.1.]

Figure 4.6 shows Hδ(X) for the ensemble of example 4.6 as a function of
δ.
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Figure 4.6. (a) The outcomes of X
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Extended ensembles

Is this compression method any more useful if we compress blocks of symbols
from a source?

We now turn to examples where the outcome x = (x1, x2, . . . , xN ) is a
string of N independent identically distributed random variables from a single
ensemble X. We will denote by XN the ensemble (X1,X2, . . . ,XN ). Remem-
ber that entropy is additive for independent variables (exercise 4.2 (p.68)), so
H(XN ) = NH(X).

Example 4.7. Consider a string of N flips of a bent coin, x = (x1, x2, . . . , xN ),
where xn ∈ {0, 1}, with probabilities p0 =0.9, p1 =0.1. The most prob-
able strings x are those with most 0s. If r(x) is the number of 1s in x
then

P (x) = pN−r(x)
0 pr(x)

1 . (4.20)

To evaluate Hδ(XN ) we must find the smallest sufficient subset Sδ. This
subset will contain all x with r(x) = 0, 1, 2, . . . , up to some rmax(δ)− 1,
and some of the x with r(x) = rmax(δ). Figures 4.7 and 4.8 show graphs
of Hδ(XN ) against δ for the cases N = 4 and N = 10. The steps are the
values of δ at which |Sδ| changes by 1, and the cusps where the slope of
the staircase changes are the points where rmax changes by 1.

Exercise 4.8.[2, p.86] What are the mathematical shapes of the curves between
the cusps?

For the examples shown in figures 4.6–4.8, Hδ(XN ) depends strongly on
the value of δ, so it might not seem a fundamental or useful definition of
information content. But we will consider what happens as N , the number
of independent variables in XN , increases. We will find the remarkable result
that Hδ(XN ) becomes almost independent of δ – and for all δ it is very close
to NH(X), where H(X) is the entropy of one of the random variables.

Figure 4.9 illustrates this asymptotic tendency for the binary ensemble of
example 4.7. As N increases, 1

N Hδ(XN ) becomes an increasingly flat function,
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! The essential bit content of X is: 

! Note that H0(X) is the special case of H∂(X) with ∂ = 0 (if P(x) > 0 for all x ∈ AX).

Essential bit content of X 

15

H∂(X ) = log2 S∂

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.3: Information content defined in terms of lossy compression 75

are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
– thus losing the ability to encode some of the more improbable symbols –
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, }, [, ], | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter δ that describes the risk we are taking when
using this compression method: δ is the probability that there will be no
name for an outcome x.

Example 4.6. Let
AX = { a, b, c, d, e, f, g, h },

and PX = { 1
4 , 1

4 , 1
4 , 3

16 , 1
64 , 1

64 , 1
64 , 1

64 }.
(4.17)

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary
names. But notice that P (x ∈ {a, b, c, d}) = 15/16. So if we are willing
to run a risk of δ = 1/16 of not having a name for x, then we can get
by with four names – half as many names as are needed if every x ∈ AX

has a name.
Table 4.5 shows binary names that could be given to the different out-
comes in the cases δ = 0 and δ = 1/16. When δ = 0 we need 3 bits to
encode the outcome; when δ = 1/16 we need only 2 bits.

δ = 0

x c(x)

a 000
b 001
c 010
d 011
e 100
f 101
g 110
h 111

δ = 1/16

x c(x)

a 00
b 01
c 10
d 11
e −
f −
g −
h −

Table 4.5. Binary names for the
outcomes, for two failure
probabilities δ.

Let us now formalize this idea. To make a compression strategy with risk
δ, we make the smallest possible subset Sδ such that the probability that x is
not in Sδ is less than or equal to δ, i.e., P (x #∈ Sδ) ≤ δ. For each value of δ
we can then define a new measure of information content – the log of the size
of this smallest subset Sδ. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest δ-sufficient subset Sδ is the smallest subset of AX satisfying

P (x ∈ Sδ) ≥ 1 − δ. (4.18)

The subset Sδ can be constructed by ranking the elements of AX in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is ≥ (1−δ).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

Hδ(X) = log2 |Sδ|. (4.19)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all
x ∈ AX). [Caution: do not confuse H0(X) and Hδ(X) with the function H2(p)
displayed in figure 4.1.]

Figure 4.6 shows Hδ(X) for the ensemble of example 4.6 as a function of
δ.
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function of δ. Note H0(X) = 3
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Extended ensembles

Is this compression method any more useful if we compress blocks of symbols
from a source?

We now turn to examples where the outcome x = (x1, x2, . . . , xN ) is a
string of N independent identically distributed random variables from a single
ensemble X. We will denote by XN the ensemble (X1,X2, . . . ,XN ). Remem-
ber that entropy is additive for independent variables (exercise 4.2 (p.68)), so
H(XN ) = NH(X).

Example 4.7. Consider a string of N flips of a bent coin, x = (x1, x2, . . . , xN ),
where xn ∈ {0, 1}, with probabilities p0 =0.9, p1 =0.1. The most prob-
able strings x are those with most 0s. If r(x) is the number of 1s in x
then

P (x) = pN−r(x)
0 pr(x)

1 . (4.20)

To evaluate Hδ(XN ) we must find the smallest sufficient subset Sδ. This
subset will contain all x with r(x) = 0, 1, 2, . . . , up to some rmax(δ)− 1,
and some of the x with r(x) = rmax(δ). Figures 4.7 and 4.8 show graphs
of Hδ(XN ) against δ for the cases N = 4 and N = 10. The steps are the
values of δ at which |Sδ| changes by 1, and the cusps where the slope of
the staircase changes are the points where rmax changes by 1.

Exercise 4.8.[2, p.86] What are the mathematical shapes of the curves between
the cusps?

For the examples shown in figures 4.6–4.8, Hδ(XN ) depends strongly on
the value of δ, so it might not seem a fundamental or useful definition of
information content. But we will consider what happens as N , the number
of independent variables in XN , increases. We will find the remarkable result
that Hδ(XN ) becomes almost independent of δ – and for all δ it is very close
to NH(X), where H(X) is the entropy of one of the random variables.

Figure 4.9 illustrates this asymptotic tendency for the binary ensemble of
example 4.7. As N increases, 1

N Hδ(XN ) becomes an increasingly flat function,

! The essential bit content of X is: 

! Note that H0(X) is the special case of H∂(X) with ∂ = 0 (if P(x) > 0 for all x ∈ AX).
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! Example:
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! The most probable sequences are those with most 0s.

! If r(x) is the number of 1s in x then  
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! If r(x) is the number of 1s in x then
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p0 = 0.9 and p1 = 0.1

H∂(X ) = log2 S∂

 r(x) is the number of 1s in x 

P(x ∈S∂ ) ≥1− ∂
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n
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

x1

0
0
0
0
1
0
0
0
1
1
1
0
1
1
1
1

x2
0
0
0
1
0
0
1
1
0
0
1
1
0
1
1
1

x3

0
0
1
0
0
1
0
1
0
1
0
1
1
0
1
1

x4

0
1
0
0
0
1
1
0
1
0
0
1
1
1
0
1

r(x)
0
1
1
1
1
2
2
2
2
2
2
3
3
3
3
4

P(x)
0,6561
0,0729
0,0729
0,0729
0,0729
0,0081
0,0081
0,0081
0,0081
0,0081
0,0081
0,0009
0,0009
0,0009
0,0009
0,0001

log2P(x)
-0,6
-3,8
-3,8
-3,8
-3,8
-6,9
-6,9
-6,9
-6,9
-6,9
-6,9

-10,1
-10,1
-10,1
-10,1
-13,3

H∂(X)
0,000
1,000
1,585
2,000
2,322
2,585
2,807
3,000
3,170
3,322
3,459
3,585
3,700
3,807
3,907
4,000

1,000
0,344
0,271
0,198
0,125
0,052
0,044
0,036
0,028
0,020
0,012
0,004
0,003
0,002
0,001
0,000

P(x ) = p0
N−r (x ) p1

r (x )

p0 = 0.9 and p1 = 0.1

H∂(X ) = log2 S∂

 r(x) is the number of 1s in x 

P(x ∈S∂ ) ≥1− ∂

P(x ∉S∂ )
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Figure 4.7. (a) The sixteen
outcomes of the ensemble X4 with
p1 = 0.1, ranked by probability.
(b) The essential bit content
Hδ(X4). The upper schematic
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probabilities by the vertical lines’
lengths (not to scale).
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N = 10, 210, . . . , 1010 binary
variables with p1 = 0.1.
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n x1 x2 x3 x4 r(x) P(x) log2P(x) H∂(X)
1 0 0 0 0 0 0,6561 -0,6 0,000 1,00000
2 0 0 0 1 1 0,0729 -3,8 1,000 0,34390
3 0 0 1 0 1 0,0729 -3,8 1,585 0,27100
4 0 1 0 0 1 0,0729 -3,8 2,000 0,19810
5 1 0 0 0 1 0,0729 -3,8 2,322 0,12520
6 0 0 1 1 2 0,0081 -6,9 2,585 0,05230
7 0 1 0 1 2 0,0081 -6,9 2,807 0,04420
8 0 1 1 0 2 0,0081 -6,9 3,000 0,03610
9 1 0 0 1 2 0,0081 -6,9 3,170 0,02800

10 1 0 1 0 2 0,0081 -6,9 3,322 0,01990
11 1 1 0 0 2 0,0081 -6,9 3,459 0,01180
12 0 1 1 1 3 0,0009 -10,1 3,585 0,00370
13 1 0 1 1 3 0,0009 -10,1 3,700 0,00280
14 1 1 0 1 3 0,0009 -10,1 3,807 0,00190
15 1 1 1 0 3 0,0009 -10,1 3,907 0,00100
16 1 1 1 1 4 0,0001 -13,3 4,000 0,00010

P(x ) = p0
N−r (x ) p1

r (x )

p0 = 0.9 and p1 = 0.1

H∂(X ) = log2 S∂

 r(x) is the number of 1s in x 

P(x ∈S∂ ) ≥1− ∂

P(x ∉S∂ )

4 bit

3 bit

2 bit

1 bit
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x log2(P (x))

...1...................1.....1....1.1.......1........1...........1.....................1.......11... −50.1

......................1.....1.....1.......1....1.........1.....................................1.... −37.3
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..............1......1.........1.1.......1..........1............1...1......................1....... −43.7
.....1........1.......1...1............1............1...........1......1..11........................ −46.8
.....1..1..1...............111...................1...............1.........1.1...1...1.............1 −56.4
.........1..........1.....1......1..........1....1..............................................1... −37.3
......1........................1..............1.....1..1.1.1..1...................................1. −43.7
1.......................1..........1...1...................1....1....1........1..11..1.1...1........ −56.4
...........11.1.........1................1......1.....................1............................. −37.3
.1..........1...1.1.............1.......11...........1.1...1..............1.............11.......... −56.4
......1...1..1.....1..11.1.1.1...1.....................1............1.............1..1.............. −59.5
............11.1......1....1..1............................1.......1..............1.......1......... −46.8
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1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 −332.1

Figure 4.10. The top 15 strings
are samples from X100, where
p1 = 0.1 and p0 = 0.9. The
bottom two are the most and
least probable strings in this
ensemble. The final column shows
the log-probabilities of the
random strings, which may be
compared with the entropy
H(X100) = 46.9 bits.

except for tails close to δ = 0 and 1. As long as we are allowed a tiny
probability of error δ, compression down to NH bits is possible. Even if we
are allowed a large probability of error, we still can compress only down to
NH bits. This is the source coding theorem.

Theorem 4.1 Shannon’s source coding theorem. Let X be an ensemble with
entropy H(X) = H bits. Given ε > 0 and 0 < δ < 1, there exists a positive
integer N0 such that for N > N0,

∣∣∣∣
1
N

Hδ(XN ) − H

∣∣∣∣ < ε. (4.21)

4.4 Typicality

Why does increasing N help? Let’s examine long strings from XN . Table 4.10
shows fifteen samples from XN for N = 100 and p1 = 0.1. The probability
of a string x that contains r 1s and N−r 0s is

P (x) = pr
1(1 − p1)N−r. (4.22)

The number of strings that contain r 1s is

n(r) =
(

N

r

)
. (4.23)

So the number of 1s, r, has a binomial distribution:

P (r) =
(

N

r

)
pr
1(1 − p1)N−r. (4.24)

These functions are shown in figure 4.11. The mean of r is Np1, and its
standard deviation is

√
Np1(1 − p1) (p.1). If N is 100 then

r ∼ Np1 ±
√

Np1(1 − p1) # 10 ± 3. (4.25)

H(XN) = 46.9 bits 
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n(r) = r
N( )

P(r) = r
N( ) p1r (1− p1)N−r

σ = Np1(1− p1)

For N = 1000 and p1 = 0.1µ = Np1
r ∼ Np1 ± Np1(1− p1) ! 100 ±10

P(x ) = p1
r (1− p0 )

N−r

1



Data Compression -

Why does increasing N help? 

32

For p1 = 0.1

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.4: Typicality 79

Figure 4.11. Anatomy of the typical set T . For p1 = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P (x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P (x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of log2 P (x)
also shows by a dotted line the mean value of log2 P (x) = −NH2(p1), which equals −46.9
when N = 100 and −469 when N = 1000. The typical set includes only the strings that
have log2 P (x) close to this value. The range marked T shows the set TNβ (as defined in
section 4.4) for N = 100 and β = 0.29 (left) and N = 1000, β = 0.09 (right).
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Figure 4.11. Anatomy of the typical set T . For p1 = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P (x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P (x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of log2 P (x)
also shows by a dotted line the mean value of log2 P (x) = −NH2(p1), which equals −46.9
when N = 100 and −469 when N = 1000. The typical set includes only the strings that
have log2 P (x) close to this value. The range marked T shows the set TNβ (as defined in
section 4.4) for N = 100 and β = 0.29 (left) and N = 1000, β = 0.09 (right).
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Figure 4.11. Anatomy of the typical set T . For p1 = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P (x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P (x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of log2 P (x)
also shows by a dotted line the mean value of log2 P (x) = −NH2(p1), which equals −46.9
when N = 100 and −469 when N = 1000. The typical set includes only the strings that
have log2 P (x) close to this value. The range marked T shows the set TNβ (as defined in
section 4.4) for N = 100 and β = 0.29 (left) and N = 1000, β = 0.09 (right).
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!

log2 P (x)
−NH(X)

TNβ

"""""

0000000000000. . . 00000000000

0001000000000. . . 00000000000

0100000001000. . . 00010000000

0000100000010. . . 00001000010

1111111111110. . . 11111110111

Figure 4.12. Schematic diagram
showing all strings in the ensemble
XN ranked by their probability,
and the typical set TNβ.

The ‘asymptotic equipartition’ principle is equivalent to:

Shannon’s source coding theorem (verbal statement). N i.i.d. ran-
dom variables each with entropy H(X) can be compressed into more
than NH(X) bits with negligible risk of information loss, as N → ∞;
conversely if they are compressed into fewer than NH(X) bits it is vir-
tually certain that information will be lost.

These two theorems are equivalent because we can define a compression algo-
rithm that gives a distinct name of length NH(X) bits to each x in the typical
set.

4.5 Proofs

This section may be skipped if found tough going.

The law of large numbers

Our proof of the source coding theorem uses the law of large numbers.

Mean and variance of a real random variable are E [u] = ū =
∑

u P (u)u
and var(u) = σ2

u = E [(u − ū)2] =
∑

u P (u)(u − ū)2.

Technical note: strictly I am assuming here that u is a function u(x)
of a sample x from a finite discrete ensemble X . Then the summations∑

u P (u)f(u) should be written
∑

x P (x)f(u(x)). This means that P (u)
is a finite sum of delta functions. This restriction guarantees that the
mean and variance of u do exist, which is not necessarily the case for
general P (u).

Chebyshev’s inequality 1. Let t be a non-negative real random variable,
and let α be a positive real number. Then

P (t ≥ α) ≤ t̄

α
. (4.30)

Proof: P (t ≥ α) =
∑

t≥α P (t). We multiply each term by t/α ≥ 1 and
obtain: P (t ≥ α) ≤

∑
t≥α P (t)t/α. We add the (non-negative) missing

terms and obtain: P (t ≥ α) ≤
∑

t P (t)t/α = t̄/α. !

All strings in the ensemble XN ranked by their probability 
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! N independent identically distributed random variables each with entropy H(X) can be 

compressed into more than NH(X) bits with negligible risk of information loss, as N → ∞
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Shannon’s source coding theorem (verbal statement) 

41



Data Compression - 

Information Theory

Comments on source coding theorem

42



Data Compression -

! The source coding theorem has two parts !

!  

! Even if the probability of error δ is extremely small, the number of bits per symbol 

needed to specify a long N-symbol string x with vanishingly small error probability does not have 

to exceed H + ε bits.

! We need to have only a tiny tolerance for error, and the number of bits required drops 

significantly from H0(X) to (H + ε). 

Two parts of Shannon’s source coding theorem

43
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Data Compression -

! The source coding theorem has two parts !

!  

! If we are yet more tolerant to compression errors? Even if δ is very close to 1, so that errors are 

made most of the time, the average number of bits per symbol needed to specify x must still be at 

least H − ε bits ! 

! We need to have only a tiny tolerance for error, and the number of bits required drops significantly 

from H0(X) to (H + ε). 

Two parts of Shannon’s source coding theorem

44
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N H∂(X

N ) > H − ε

Regardless of our specific allowance for error,  
the number of bits per symbol needed to specify x is H bits !
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! it is important not to think that the elements of the typical set TNβ really do have roughly 

the same probability as each other 

! They are similar in probability only in the sense that their values of log2 1/P(x) are within 

2Nβ of each other.

Asymptotic equipartition?

45
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Why the typical set?  
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the most probable string in the typical set will be of order 2α
√

N times greater
than the least probable string in the typical set. As β decreases, N increases,
and this ratio 2α

√
N grows exponentially. Thus we have ‘equipartition’ only in

a weak sense!

Why did we introduce the typical set?

The best choice of subset for block compression is (by definition) Sδ, not a
typical set. So why did we bother introducing the typical set? The answer is,
we can count the typical set. We know that all its elements have ‘almost iden-
tical’ probability (2−NH), and we know the whole set has probability almost
1, so the typical set must have roughly 2NH elements. Without the help of
the typical set (which is very similar to Sδ) it would have been hard to count
how many elements there are in Sδ.

4.7 Exercises

Weighing problems

" Exercise 4.9.[1 ] While some people, when they first encounter the weighing
problem with 12 balls and the three-outcome balance (exercise 4.1
(p.66)), think that weighing six balls against six balls is a good first
weighing, others say ‘no, weighing six against six conveys no informa-
tion at all’. Explain to the second group why they are both right and
wrong. Compute the information gained about which is the odd ball ,
and the information gained about which is the odd ball and whether it is
heavy or light.

" Exercise 4.10.[2 ] Solve the weighing problem for the case where there are 39
balls of which one is known to be odd.

" Exercise 4.11.[2 ] You are given 16 balls, all of which are equal in weight except
for one that is either heavier or lighter. You are also given a bizarre two-
pan balance that can report only two outcomes: ‘the two sides balance’
or ‘the two sides do not balance’. Design a strategy to determine which
is the odd ball in as few uses of the balance as possible.

" Exercise 4.12.[2 ] You have a two-pan balance; your job is to weigh out bags of
flour with integer weights 1 to 40 pounds inclusive. How many weights
do you need? [You are allowed to put weights on either pan. You’re only
allowed to put one flour bag on the balance at a time.]

Exercise 4.13.[4, p.86] (a) Is it possible to solve exercise 4.1 (p.66) (the weigh-
ing problem with 12 balls and the three-outcome balance) using a
sequence of three fixed weighings, such that the balls chosen for the
second weighing do not depend on the outcome of the first, and the
third weighing does not depend on the first or second?

(b) Find a solution to the general N -ball weighing problem in which
exactly one of N balls is odd. Show that in W weighings, an odd
ball can be identified from among N = (3W − 3)/2 balls.

Exercise 4.14.[3 ] You are given 12 balls and the three-outcome balance of exer-
cise 4.1; this time, two of the balls are odd; each odd ball may be heavy
or light, and we don’t know which. We want to identify the odd balls
and in which direction they are odd.
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Further Reading
! Recommend Readings 

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, 

pages 74 - 84. 

! Supplemental readings:

48



Data Compression -

What you should know
! raw bit content 

! Ways for compressing files 

! The smallest δ-sufficient subset 

! The essential bit content of an ensemble 

! Why to compress block of symbols 

! The Typical set 

! Shannon’s source coding theorem. Its two parts 

! H(X) viewed as a compression limit for a source
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