Information Theory

04

Data Compression

Notice

- Author
 - João Moura Pires (jmp@fct.unl.pt)

This material can be freely used for personal or academic purposes without any previous authorization from the author, provided that this notice is maintained/kept.

For commercial purposes the use of any part of this material requires the previous authorization from the author.

Bibliography

Many examples are extracted and adapted from:

Information Theory, Inference, and Learning Algorithms
David J.C. MacKay
2005, Version 7.2

- And some slides were based on lain Murray course
 - http://www.inf.ed.ac.uk/teaching/courses/it/2014/

Table of Contents

- Data compression
- Information content in terms of lossy compression
- Typicality
- Comments on source coding theorem

Information Theory

Data Compression

- The **Shannon information content** of an outcome *x* is a natural measure of its **information** content
 - Improbable outcomes do convey more information than probable outcomes

■ Information content of a source by considering how many bits are needed to describe the outcome of an experiment

- The **Shannon information content** of an outcome *x* is a natural measure of its **information** content
 - Improbable outcomes do convey more information than probable outcomes

- Information content of a source by considering how many bits are needed to describe the outcome of an experiment
 - If we can show that we can compress data from a particular source into a file of **L** bits per source symbol and recover the data reliably,

- The **Shannon information content** of an outcome *x* is a natural measure of its **information** content
 - Improbable outcomes do convey more information than probable outcomes

- Information content of a source by considering how many bits are needed to describe the outcome of an experiment
 - If we can show that we can compress data from a particular source into a file of **L bits per source symbol** and recover the data reliably,
 - then we will say that the average information content of that source is at most L bits per symbol.

One way of measuring the information content of a random variable is simply to count the number of possible outcomes, $|A_X|$.

- One way of measuring the information content of a random variable is simply to count the number of possible outcomes, $|A_X|$.
- If we gave a **binary name to each outcome**, the **length of each name would** be $log_2 |A_X|$ bits, if $|A_X|$ happened to be a power of 2.

- One way of measuring the information content of a random variable is simply to count the number of possible outcomes, $|A_X|$.
- If we gave a **binary name to each outcome**, the **length of each name would** be $log_2 |A_X|$ bits, if $|A_X|$ happened to be a power of 2.
- The raw bit content of X is

$$H_0(X) = \log_2 |A_X|$$

- One way of measuring the information content of a random variable is simply to count the number of possible outcomes, $|A_X|$.
- If we gave a **binary name to each outcome**, the **length of each name would** be $log_2 |A_X|$ bits, if $|A_X|$ happened to be a power of 2.
- The raw bit content of X is

$$H_0(X) = \log_2 \left| A_X \right|$$

It is an additive quantity: the raw bit content of an ordered pair x, y, having $|A_X|$ $|A_Y|$ possible outcomes, satisfies:

$$H_0(X,Y) = H_0(X) + H_0(Y)$$

- One way of measuring the information content of a random variable is simply to count the number of possible outcomes, $|A_X|$.
- If we gave a **binary name to each outcome**, the **length of each name would** be $log_2 |A_X|$ bits, if $|A_X|$ happened to be a power of 2.
- The raw bit content of X is

$$H_0(X) = \log_2 \left| A_X \right|$$

It is an additive quantity: the raw bit content of an ordered pair x, y, having $|A_X|$ $|A_Y|$ possible outcomes, satisfies:

$$H_0(X,Y) = H_0(X) + H_0(Y)$$

Does not include any probabilistic element, and the encoding rule does not 'compress'.

Compress all filles?

- Could there be:
 - a compressor that maps an outcome x to a binary code c(x),
 - a decompressor that maps c back to x,
 - **such that every possible outcome is compressed into a binary code of length shorter than**

 $H_0(X)$ bits?

Compress all filles?

- Could there be:
 - a compressor that maps an outcome x to a binary code c(x),
 - a decompressor that maps c back to x,
 - such that every possible outcome is compressed into a binary code of length shorter than $H_0(X)$ bits?

No!! It is impossible to make a reversible compression program that reduces the size of all files

Ways for compressing files

Ways for compressing files

- A *lossy* compressor compresses some files, but maps some files to the same encoding.
 - We'll denote by δ the probability that the source string is one of the confusable files, so a lossy compressor has a probability δ of failure.
 - If δ can be made very small then a lossy compressor may be practically useful. (images, videos, etc)

Ways for compressing files

- A *lossy* compressor compresses some files, but maps some files to the same encoding.
 - We'll denote by δ the probability that the source string is one of the confusable files, so a lossy compressor has a probability δ of failure.
 - If δ can be made very small then a lossy compressor may be practically useful. (images, videos, etc)
- A lossless compressor maps all files to different encodings
 - if it shortens some files, it necessarily makes others longer.
 - We try to design the compressor so that the **probability that a file is lengthened is very small**, and the probability that it is shortened is large.

Information Theory

Information content in terms of lossy compression

- Imagine comparing the information contents of two text files
 - A. one in which all 128 ASCII characters are used with equal probability
 - B. one in which the characters are used with their frequencies in English text

- Imagine comparing the information contents of two text files
 - A. one in which all 128 ASCII characters are used with equal probability
 - B. one in which the characters are used with their frequencies in English text
- Can we define a measure of information content that distinguishes between these two files?
 - The case B. contains less information per character because it is more predictable

- Imagine comparing the information contents of two text files
 - A. one in which all 128 ASCII characters are used with equal probability
 - B. one in which the characters are used with their frequencies in English text
- Can we define a measure of information content that distinguishes between these two files?
 - The case B. contains less information per character because it is more predictable
- How to use this knowledge?
 - For instance just remove the less probable symbols to get a smaller alphabet
 - For instance, guessing that the most infrequent characters { !, @, #, %, ^, *, ~, <, >, /, \, _, {, },
 [,], | } won't occur! Reducing the alphabet by seventeen.
 - δ is the probability that there will be no name for an outcome x.

Example:

$$\mathcal{A}_X = \{ \text{ a, b, c, d, e, f, g, h} \},$$

$$\mathcal{P}_X = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \}.$$

$$H_0(X) = \log_2 |A_X| = \log_2 8 = 3bits$$

Example:

$$\mathcal{A}_X = \{ \text{ a, b, c, d, e, f, g, h} \},\$$

 $\mathcal{P}_X = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \}.$

$$H_0(X) = \log_2 |A_X| = \log_2 8 = 3bits$$

But $P(x \in \{a, b, c, d\}) = 15/16$.

Example:

$$\begin{split} \mathcal{A}_X = \{ \text{ a, b, c, d, e, f, g, h} \}, \\ \mathcal{P}_X = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \}. \end{split}$$

$$H_0(X) = \log_2 |A_X| = \log_2 8 = 3bits$$

- But $P(x \in \{a, b, c, d\}) = 15/16$.
- So if we accept a risk $\delta = 1/16$ of not having a symbol for x, we can consider codes only for each in $\{a, b, c, d\}$ and so only requiring 2 bits.

$\delta = 0$		$\delta = 1/16$	
x	c(x)	x	c(x)
a	000	a	00
b	001	b	01
С	010	С	10
d	011	d	11
е	100	е	_
f	101	f	_
g	110	g	_
h	111	h	_

Smallest δ -sufficient subset

- **The smallest δ-sufficient subset**.
 - S_{δ} is the smallest subset of A_X satisfying

$$P(x \in S_{\partial}) \ge 1 - \partial$$

Smallest δ -sufficient subset

- **The smallest δ-sufficient subset.**
 - S_{δ} is the smallest subset of A_X satisfying

$$P(x \in S_{\partial}) \ge 1 - \partial$$

The subset S_{δ} can be constructed by ranking the elements of A_X in order of decreasing probability and adding successive elements starting from the most probable elements until the total probability is $\geq (1-\delta)$.

Smallest δ -sufficient subset

- **The smallest δ-sufficient subset.**
 - S_{δ} is the smallest subset of A_X satisfying

$$P(x \in S_{\partial}) \ge 1 - \partial$$

The subset S_{δ} can be constructed by ranking the elements of A_X in order of decreasing probability and adding successive elements starting from the most probable elements until the total probability is $\geq (1-\delta)$.

We can make a data compression code by assigning a binary name to each element of the smallest sufficient subset

Essential bit content of X

The essential bit content of X is:

$$H_{\partial}(X) = \log_2 |S_{\partial}|$$

Note that $H_0(X)$ is the special case of $H_0(X)$ with $\partial = 0$ (if P(x) > 0 for all $x \in A_X$).

$$\mathcal{A}_X = \{ \text{ a, b, c, d, e, f, g, h} \},\ \mathcal{P}_X = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \}.$$

Essential bit content of X

The essential bit content of X is:

$$H_{\partial}(X) = \log_2 |S_{\partial}|$$

Note that $H_0(X)$ is the special case of $H_{\partial}(X)$ with $\partial = 0$ (if P(x) > 0 for all $x \in A_X$).

$$\mathcal{A}_X = \{ \text{ a, b, c, d, e, f, g, h} \},$$

$$\mathcal{P}_X = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \}.$$

- What if we **compress** *blocks* **of symbols** from a source?
- Let the outcome $\mathbf{x} = (x_1, x_2, ..., x_N)$ is a string of N independent identically distributed random variables from a single ensemble X. X^N is the ensemble $(X_1, X_2, ..., X_N)$

- What if we **compress** *blocks* **of symbols** from a source?
- Let the outcome $\mathbf{x} = (x_1, x_2, ..., x_N)$ is a string of N independent identically distributed random variables from a single ensemble X. X^N is the ensemble $(X_1, X_2, ..., X_N)$
- The Entropy is additive for independent variables: $H(X^N) = N H(X)$

- What if we **compress** *blocks* **of symbols** from a source?
- Let the outcome $\mathbf{x} = (x_1, x_2, ..., x_N)$ is a string of N independent identically distributed random variables from a single ensemble X. X^N is the ensemble $(X_1, X_2, ..., X_N)$
- The Entropy is additive for independent variables: $H(X^N) = N H(X)$
- Example:
 - N flips of a bent coin, $x = (x_1, x_2,...,x_N)$, where $x_i \in \{0, 1\}$, with $p_0 = 0.9$ and $p_1 = 0.1$
 - The most probable sequences are those with most 0s.
 - If r(x) is the number of 1s in x then

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

- N flips of a bent coin, $x = (x_1, x_2,...,x_N)$, where $x_i \in \{0, 1\}$, with $p_0 = 0.9$ and $p_1 = 0.1$
- The most probable sequences are those with most 0s.
- If r(x) is the number of 1s in x then $P(x) = p_0^{N-r(x)} p_1^{r(x)}$
- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - So is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial) 1$ and some sequences with $r(x) = r_{max}(\partial)$.

Extended ensembles - Example for N = 4

- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - S_{\delta} is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial)$ 1 and some sequences with $r(x) = r_{max}(\partial)$.

- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - S_{\delta} is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial)$ 1 and some sequences with $r(x) = r_{max}(\partial)$.

<i>r</i> (x)
0
1
2
3
4

- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - So is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial) 1$ and some sequences with $r(x) = r_{max}(\partial)$.

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

<i>r</i> (x)	
0	
1	
2	
3	
4	

- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - So is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial)$ 1 and some sequences with $r(x) = r_{max}(\partial)$.

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

<i>r</i> (x)	P(x)
0	0,6561
1	0,0729
2	0,0081
3	0,0009
4	1E-04

- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - So is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial)$ 1 and some sequences with $r(x) = r_{max}(\partial)$.

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

<i>r</i> (x)	$P(\mathbf{x})$	$\log_2 P(\mathbf{x})$
0	0,6561	-0,6
1	0,0729	-3,8
2	0,0081	-6,9
3	0,0009	-10,1
4	1E-04	-13,3

- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - So is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial)$ 1 and some sequences with $r(x) = r_{max}(\partial)$.

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

<i>r</i> (x)	P(x)	$\log_2 P(\mathbf{x})$	C(<i>N</i> , <i>r</i>)
0	0,6561	-0,6	1
1	0,0729	-3,8	4
2	0,0081	-6,9	6
3	0,0009	-10,1	4
4	1E-04	-13,3	1

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n

_

n	<i>X</i> ₁	X 2	X 3	X 4
1	0	0	0	0
2	0	0	0	1
3	0	0	1	0
4	0	1	0	0
5	1	0	0	0
6	0	0	1	1
7	0	1	0	1
8	0	1	1	0
9	1	0	0	1
10	1	0	1	0
11	1	1	0	0
12	0	1	1	1
13	1	0	1	1
14	1	1	0	1
15	1	1	1	0
16	1	1	1	1

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n	<i>X</i> ₁	X 2	X 3	X 4	<i>r</i> (x)
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	1
4	0	1	0	0	1
5	1	0	0	0	1
6	0	0	1	1	2
7	0	1	0	1	2
8	0	1	1	0	2
တ	1	0	0	1	2
10	1	0	1	0	2
11	1	1	0	0	2
12	0	1	1	1	3
13	1	0	1	1	3
14	1	1	0	1	3
15	1	1	1	0	3
16	1	1	1	1	4

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n	<i>X</i> ₁	X 2	X 3	X 4	<i>r</i> (x)
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	1
4	0	1	0	0	1
5	1	0	0	0	1
6	0	0	1	1	2
6 7	0	1	0	1	2
8	0	1	1	0	2
တ	1	0	0	1	2
10	1	0	1	0	2
11	1	1	0	0	2
12	0	1	1	1	3
13	1	0	1	1	3
14	1	1	0	1	3
15	1	1	1	0	3
16	1	1	1	1	4

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n	<i>X</i> ₁	X2	X 3	X 4	<i>r</i> (x)	P(x)
1	0	0	0	0	0	0,6561
2	0	0	0	1	1	0,0729
3	0	0	1	0	1	0,0729
4	0	1	0	0	1	0,0729
5	1	0	0	0	1	0,0729
6	0	0	1	1	2	0,0081
7	0	1	0	1	2	0,0081
8	0	1	1	0	2	0,0081
9	1	0	0	1	2	0,0081
10	1	0	1	0	2	0,0081
11	1	1	0	0	2	0,0081
12	0	1	1	1	3	0,0009
13	1	0	1	1	3	0,0009
14	1	1	0	1	3	0,0009
15	1	1	1	0	3	0,0009
16	1	1	1	1	4	0,0001

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n	X 1	X 2	X 3	X 4	<i>r</i> (x)	P(x)	$log_2P(x)$
1	0	0	0	0	0	0,6561	-0,6
2	0	0	0	1	1	0,0729	-3,8
3	0	0	1	0	1	0,0729	-3,8
4	0	1	0	0	1	0,0729	-3,8
5	1	0	0	0	1	0,0729	-3,8
6	0	0	1	1	2	0,0081	-6,9
7	0	1	0	1	2	0,0081	-6,9
8	0	1	1	0	2	0,0081	-6,9
9	1	0	0	1	2	0,0081	-6,9
10	1	0	1	0	2	0,0081	-6,9
11	1	1	0	0	2	0,0081	-6,9
12	0	1	1	1	3	0,0009	-10,1
13	1	0	1	1	3	0,0009	-10,1
14	1	1	0	1	3	0,0009	-10,1
15	1	1	1	0	3	0,0009	-10,1
16	1	1	1	1	4	0,0001	-13,3

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n	X 1	X 2	X 3	X 4	<i>r</i> (x)	P(x)	$log_2P(x)$
1	0	0	0	0	0	0,6561	-0,6
2	0	0	0	1	1	0,0729	-3,8
3	0	0	1	0	1	0,0729	-3,8
4	0	1	0	0	1	0,0729	-3,8
5	1	0	0	0	1	0,0729	-3,8
6	0	0	1	1	2	0,0081	-6,9
7	0	1	0	1	2	0,0081	-6,9
8	0	1	1	0	2	0,0081	-6,9
9	1	0	0	1	2	0,0081	-6,9
10	1	0	1	0	2	0,0081	-6,9
11	1	1	0	0	2	0,0081	-6,9
12	0	1	1	1	3	0,0009	-10,1
13	1	0	1	1	3	0,0009	-10,1
14	1	1	0	1	3	0,0009	-10,1
15	1	1	1	0	3	0,0009	-10,1
16	1	1	1	1	4	0,0001	-13,3

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

$$H_{\partial}(X) = \log_2 |S_{\partial}|$$

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n	<i>X</i> ₁	X 2	X 3	X 4	<i>r</i> (x)	P(x)	$\log_2 P(x)$	H∂(X)
1	0	0	0	0	0	0,6561	-0,6	0,000
2	0	0	0	1	1	0,0729	-3,8	1,000
3	0	0	1	0	1	0,0729	-3,8	1,585
4	0	1	0	0	1	0,0729	-3,8	2,000
5	1	0	0	0	1	0,0729	-3,8	2,322
6	0	0	1	1	2	0,0081	-6,9	2,585
7	0	1	0	1	2	0,0081	-6,9	2,807
8	0	1	1	0	2	0,0081	-6,9	3,000
9	1	0	0	1	2	0,0081	-6,9	3,170
10	1	0	1	0	2	0,0081	-6,9	3,322
11	1	1	0	0	2	0,0081	-6,9	3,459
12	0	1	1	1	3	0,0009	-10,1	3,585
13	1	0	1	1	3	0,0009	-10,1	3,700
14	1	1	0	1	3	0,0009	-10,1	3,807
15	1	1	1	0	3	0,0009	-10,1	3,907
16	1	1	1	1	4	0,0001	-13,3	4,000

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

$$H_{\partial}(X) = \log_2 |S_{\partial}|$$

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

n	X 1	X 2	X 3	X 4	<i>r</i> (x)	P(x)	$log_2P(x)$	H∂(X)
1	0	0	0	0	0	0,6561	-0,6	0,000
2	0	0	0	1	1	0,0729	-3,8	1,000
3	0	0	1	0	1	0,0729	-3,8	1,585
4	0	1	0	0	1	0,0729	-3,8	2,000
5	1	0	0	0	1	0,0729	-3,8	2,322
6	0	0	1	1	2	0,0081	-6,9	2,585
7	0	1	0	1	2	0,0081	-6,9	2,807
8	0	1	1	0	2	0,0081	-6,9	3,000
9	1	0	0	1	2	0,0081	-6,9	3,170
10	1	0	1	0	2	0,0081	-6,9	3,322
11	1	1	0	0	2	0,0081	-6,9	3,459
12	0	1	1	1	3	0,0009	-10,1	3,585
13	1	0	1	1	3	0,0009	-10,1	3,700
14	1	1	0	1	3	0,0009	-10,1	3,807
15	1	1	1	0	3	0,0009	-10,1	3,907
16	1	1	1	1	4	0,0001	-13,3	4,000

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

$$H_{\partial}(X) = \log_2 |S_{\partial}|$$

$$P(x \in S_{\partial}) \ge 1 - \partial$$

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

									D(0)
n	<i>X</i> ₁	X 2	X 3	X 4	<i>r</i> (x)	P(x)	$log_2P(x)$	H∂(X)	$P(\mathbf{x} \notin S_{\partial})$
1	0	0	0	0	0	0,6561	-0,6	0,000	1,000
2	0	0	0	1	1	0,0729	-3,8	1,000	0,344
3	0	0	1	0	1	0,0729	-3,8	1,585	0,271
4	0	1	0	0	1	0,0729	-3,8	2,000	0,198
5	1	0	0	0	1	0,0729	-3,8	2,322	0,125
6	0	0	1	1	2	0,0081	-6,9	2,585	0,052
7	0	1	0	1	2	0,0081	-6,9	2,807	0,044
8	0	1	1	0	2	0,0081	-6,9	3,000	0,036
9	1	0	0	1	2	0,0081	-6,9	3,170	0,028
10	1	0	1	0	2	0,0081	-6,9	3,322	0,020
11	1	1	0	0	2	0,0081	-6,9	3,459	0,012
12	0	1	1	1	3	0,0009	-10,1	3,585	0,004
13	1	0	1	1	3	0,0009	-10,1	3,700	0,003
14	1	1	0	1	3	0,0009	-10,1	3,807	0,002
15	1	1	1	0	3	0,0009	-10,1	3,907	0,001
16	1	1	1	1	4	0,0001	-13,3	4,000	0,000

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

$$H_{\partial}(X) = \log_2 |S_{\partial}|$$

$$P(x \in S_{\partial}) \ge 1 - \partial$$

- To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}
 - So is the subset that contains all sequences x with $r(x) = 0, 1, ..., r_{max}(\partial)$ 1 and some sequences with $r(x) = r_{max}(\partial)$.

To evaluate $H_{\partial}(X^N)$ we must find the smallest sufficient subset S_{δ}

1 bit

2 bit

3 bit

4 bit

n	X 1	X 2	X 3	X 4	<i>r</i> (x)	P(x)	$log_2P(\mathbf{x})$	H∂(X)	$P(\mathbf{x} \notin S_{\partial})$
1	0	0	0	0	0	0,6561	-0,6	0,000	1,00000
2	0	0	0	1	1	0,0729	-3,8	1,000	0,34390
3	0	0	1	0	1	0,0729	-3,8	1,585	0,27100
4	0	1	0	0	1	0,0729	-3,8	2,000	0,19810
5	1	0	0	0	1	0,0729	-3,8	2,322	0,12520
6	0	0	1	1	2	0,0081	-6,9	2,585	0,05230
7	0	1	0	1	2	0,0081	-6,9	2,807	0,04420
8	0	1	1	0	2	0,0081	-6,9	3,000	0,03610
9	1	0	0	1	2	0,0081	-6,9	3,170	0,02800
10	1	0	1	0	2	0,0081	-6,9	3,322	0,01990
11	1	1	0	0	2	0,0081	-6,9	3,459	0,01180
12	0	1	1	1	3	0,0009	-10,1	3,585	0,00370
13	1	0	1	1	3	0,0009	-10,1	3,700	0,00280
14	1	1	0	1	3	0,0009	-10,1	3,807	0,00190
15	1	1	1	0	3	0,0009	-10,1	3,907	0,00100
16	1	1	1	1	4	0,0001	-13,3	4,000	0,00010

$$P(\mathbf{x}) = p_0^{N-r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

$$p_0 = 0.9$$
 and $p_1 = 0.1$

$$H_{\partial}(X) = \log_2 |S_{\partial}|$$

$$P(x \in S_{\partial}) \ge 1 - \partial$$

Extended ensembles - Example for N = 4 and N = 10

Extended ensembles - Example for N = 4 and N = 10

Extended ensembles - N = 10, 210, 410, ..., 1010

Extended ensembles - N = 10, 210, 410, ..., 1010

Extended ensembles - N = 10, 210, 410, ..., 1010

As long as we are allowed a tiny probability of error δ , compression down to NH bits is possible.

- As long as we are allowed a tiny probability of error δ , compression down to NH bits is possible.
- Even if we are allowed a large probability of error, we still can compress only down to *N H* bits.

- As long as we are allowed a tiny probability of error δ , compression down to NH bits is possible.
- Even if we are allowed a large probability of error, we still can compress only down to *N H* bits.

Shannon's source coding theorem. Let X be an ensemble with entropy H(X) = H bits. Given $\varepsilon > 0$ and $0 < \delta < 1$, there exists a positive integer N_0 such that for $N > N_0$,

$$\left| \frac{1}{N} H_{\partial}(X^N) - H \right| < \varepsilon$$

Information Theory

Typicality

■ 15 samples from X^N for N = 100 and $p_1 = 0.1$, $p_0 = 0.9$.

$$H(X^{N}) = 46.9 \text{ bits}$$

15 samples from X^N for N = 100 and $p_1 = 0.1$, $p_0 = 0.9$.

 $H(X^{N}) = 46.9 \text{ bits}$

\mathbf{x}	$S_2(P(\mathbf{x}))$
1	-50.1
	-37.3
11	-65.9
1.11	-56.4
11	-53.2
	-43.7
1	-46.8
111	-56.4
111111	-37.3
1	-43.7
1	-56.4
	-37.3
.1	-56.4
11111111	-59.5
	-46.8

The most probable and the less probable sequences

$$H(X^{N}) = 46.9 \text{ bits}$$

\mathbf{x}	$g_2(P(\mathbf{x}))$
1	-50.1
111111	-37.3
111111111	-65.9
1.11	-56.4
11	-53.2
	-43.7
1	-46.8
111	-56.4
111111	-37.3
1	-43.7
1	-56.4
	-37.3
.1	-56.4
1111111	-59.5
	-46.8
	-15.2
111111111111111111111111111111111111111	-332.1

The **probability** of a string x that contains r 1s and N-r 0s is:

$$P(\mathbf{x}) = p_1^{r} (1 - p_0)^{N-r}$$

The **probability** of a string x that contains r 1s and N-r 0s is:

$$P(\mathbf{x}) = p_1^r (1 - p_0)^{N-r}$$

The **number** of strings that contain r 1s is:

$$n(r) = \binom{N}{r}$$

The **probability** of a string x that contains r 1s and N-r 0s is:

$$P(\mathbf{x}) = p_1^r (1 - p_0)^{N-r}$$

The **number** of strings that contain r 1s is:

$$n(r) = \binom{N}{r}$$

$$P(r) = {N \choose r} p_1^r (1 - p_1)^{N-r}$$

The **probability** of a string x that contains r 1s and N-r 0s is:

$$P(\mathbf{x}) = p_1^r (1 - p_0)^{N-r}$$

The **number** of strings that contain r 1s is:

$$n(r) = \binom{N}{r}$$

$$P(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r} \qquad \mu = Np_1$$
$$\sigma = \sqrt{Np_1(1 - p_1)}$$

The **probability** of a string x that contains r 1s and N-r 0s is:

$$P(\mathbf{x}) = p_1^r (1 - p_0)^{N-r}$$

The **number** of strings that contain r 1s is:

$$n(r) = \binom{N}{r}$$

$$P(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^{r} (1 - p_1)^{N - r}$$

The **probability** of a string x that contains r 1s and N-r 0s is:

$$P(\mathbf{x}) = p_1^{r} (1 - p_1)^{N-r}$$

The **number** of strings that contain r 1s is:

$$n(r) = \binom{N}{r}$$

$$P(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$p(r) = \binom{N}{r} p_1^r (1 - p_1)^{N - r}$$

$$N = 100$$

$$N = 1000$$

$$n(r) = \binom{N}{r} \quad \text{8e+28} \quad \text{2e+299} \quad \text{2e+299} \quad \text{1e+299} \quad \text{1$$

$$N = 100$$

$$N = 1000$$

$$n(r) = \binom{N}{r}$$

$$8e + 28$$

$$6e + 28$$

$$4e + 28$$

$$2e + 28$$

$$0$$

$$0$$

$$10$$

$$20$$

$$30$$

$$40$$

$$50$$

$$60$$

$$70$$

$$80$$

$$90$$

$$100$$

$$100$$

$$200$$

$$300$$

$$400$$

$$500$$

$$600$$

$$700$$

$$800$$

$$900$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$n(r)P(\mathbf{x}) = \binom{N}{r}p_1^r(1-p_1)^{N-r}$$

$$n(r)P(\mathbf{x}) = \binom{N}{r}p_1^r(1-p_1)^{N-r}$$

$$n(r)P(\mathbf{x}) = \binom{N}{r}p_1^r(1-p_1)^{N-r}$$

$$\log_2 P(\mathbf{x})$$

$$\log_2 P(\mathbf{x})$$

Mean of $\log_2 P(x) = -NH_2(p_1)$

$$\log_2 P(\mathbf{x})$$

Mean of $\log_2 P(x) = -NH_2(p_1)$

The **typical set** includes only the strings that have $\log_2 P(x)$ close to this value $-NH_2(p_1)$

For an arbitrary ensemble X with alphabet $A_X = \{x_1, ..., x_i, ..., x_I\}$, a long string of N symbols will **usually** contain about p_1N occurrences of the first symbol, p_2N occurrences of the second, ... p_IN occurrences of the last symbol.

$$P(\mathbf{x}) = P(x_1)P(x_2)P(x_3)...P(x_N)$$

For an arbitrary ensemble X with alphabet $A_X = \{x_1, ..., x_i, ..., x_l\}$, a long string of N symbols will **usually** contain about p_1N occurrences of the first symbol, p_2N occurrences of the second, ... p_1N occurrences of the last symbol.

$$P(\mathbf{x}) = P(x_1)P(x_2)P(x_3)...P(x_N) \simeq p_1^{p_1N} p_2^{p_2N}...p_I^{p_IN}$$

For an arbitrary ensemble X with alphabet $A_X = \{x_1, ..., x_i, ..., x_I\}$, a long string of N symbols will **usually** contain about p_1N occurrences of the first symbol, p_2N occurrences of the second, ... p_1N occurrences of the last symbol.

$$P(\mathbf{x}) = P(x_1)P(x_2)P(x_3)...P(x_N) \simeq p_1^{p_1N} p_2^{p_2N}...p_I^{p_IN}$$

So the information content of a typical string is

$$\log_2 \frac{1}{P(\mathbf{x})} \simeq N \sum_i p_i \log_2 \frac{1}{p_i}$$

For an arbitrary ensemble X with alphabet $A_X = \{x_1, ..., x_i, ..., x_I\}$, a long string of N symbols will **usually** contain about p_1N occurrences of the first symbol, p_2N occurrences of the second, ... p_1N occurrences of the last symbol.

$$P(\mathbf{x}) = P(x_1)P(x_2)P(x_3)...P(x_N) \simeq p_1^{p_1N} p_2^{p_2N}...p_I^{p_IN}$$

So the information content of a typical string is

$$\log_2 \frac{1}{P(\mathbf{X})} \simeq N \sum_i p_i \log_2 \frac{1}{p_i} = NH(X) = NH$$

For an arbitrary ensemble X with alphabet $A_X = \{x_1, ..., x_i, ..., x_I\}$, a long string of N symbols will **usually** contain about p_1N occurrences of the first symbol, p_2N occurrences of the second, ... p_IN occurrences of the last symbol.

$$P(\mathbf{x}) = P(x_1)P(x_2)P(x_3)...P(x_N) \simeq p_1^{p_1N} p_2^{p_2N}...p_I^{p_IN}$$

So the information content of a typical string is

$$\log_2 \frac{1}{P(\mathbf{X})} \simeq N \sum_i p_i \log_2 \frac{1}{p_i} = NH(X) = NH$$

So, the random variable $\log_2 1/P(\mathbf{x})$, which is the information content of \mathbf{x} , is very likely to be close in value to NH.

So, the random variable $\log_2 1/P(\mathbf{x})$, which is the information content of \mathbf{x} , is very likely to be close in value to NH.

- So, the random variable $\log_2 1/P(\mathbf{x})$, which is the information content of \mathbf{x} , is very likely to be close in value to NH.
- Lets define the **typical elements of** A_X^N to be those elements that have probability close to 2^{-NH}

- So, the random variable $\log_2 1/P(\mathbf{x})$, which is the information content of \mathbf{x} , is very likely to be close in value to NH.
- Lets define the **typical elements of** A_X^N to be those elements that have probability close to 2^{-NH}
- Consider a parameter β that defines how close the probability has to be to 2^{-NH} for an element be *typical*.

- So, the random variable $\log_2 1/P(\mathbf{x})$, which is the information content of \mathbf{x} , is very likely to be close in value to NH.
- Lets define the **typical elements of** A_X^N to be those elements that have probability close to 2^{-NH}
- Consider a parameter β that defines how close the probability has to be to 2^{-NH} for an element be *typical*.
- The typical set, $T_{N\beta}$:

$$T_{N\beta} = \left\{ \boldsymbol{x} \in A_X^N : \left| \frac{1}{N} \log_2 \frac{1}{P(\boldsymbol{x})} - H \right| < \beta \right\}$$

The typical set, $T_{N\beta}$:

- Notes
 - Unlike the smallest sufficient subset, the typical set does not include the most probable elements of ${\cal A}_{\scriptscriptstyle X}^{\scriptscriptstyle N}$
 - But these most probable elements contribute negligible probability.
 - Whatever value of β we choose, the **typical set contains almost all the probability as** N increases

The typical set, $T_{N\beta}$:

$$T_{N\beta} = \left\{ \mathbf{x} \in A_X^N : \left| \frac{1}{N} \log_2 \frac{1}{P(\mathbf{x})} - H \right| < \beta \right\}$$

- Notes
 - Unlike the smallest sufficient subset, the typical set does not include the most probable elements of ${\cal A}_{\scriptscriptstyle X}^{\scriptscriptstyle N}$
 - But these most probable elements contribute negligible probability.
 - Whatever value of β we choose, the **typical set contains almost all the probability as** N increases

all strings in the ensemble X^N

All strings in the ensemble X^N ranked by their probability

'Asymptotic equipartition' principle

- For an ensemble of N independent identically distributed (i.i.d.) random variables $X^N \equiv (X_1, X_2, ..., X_N)$, with N sufficiently large, the outcome $\mathbf{x} = (x_1, x_2, ..., x_N)$ is almost certain to belong to a subset of A_X^N having only $2^{NH(X)}$ members, each having probability 'close to' $2^{-NH(X)}$.
- Notice that if $H(X) < H_0(X)$ then $2^{NH(X)}$ is a tiny fraction of the number of possible outcomes

$$|A_X^N| = |A_X|^N = 2^{NH_0(X)}$$

'Asymptotic equipartition' principle

- For an ensemble of N independent identically distributed (i.i.d.) random variables $X^N \equiv (X_1, X_2, ..., X_N)$, with N sufficiently large, the outcome $\mathbf{x} = (x_1, x_2, ..., x_N)$ is almost certain to belong to a subset of A_X^N having only $2^{NH(X)}$ members, each having probability 'close to' $2^{-NH(X)}$.
- Notice that if $H(X) < H_0(X)$ then $2^{NH(X)}$ is a tiny fraction of the number of possible outcomes

$$\left|A_X^N\right| = \left|A_X\right|^N = 2^{NH_0(X)}$$

$$H_0(X) = \log_2 \left| A_X \right|$$

Shannon's source coding theorem (verbal statement)

N independent identically distributed random variables each with entropy H(X) can be compressed into more than NH(X) bits with negligible risk of information loss, as $N \to \infty$

Conversely if they are compressed into fewer than NH(X) bits it is virtually certain that information will be lost.

Information Theory

Comments on source coding theorem

Two parts of Shannon's source coding theorem

The source coding theorem has two parts!

$$\left| \frac{1}{N} H_{\partial}(X^N) - H \right| < \varepsilon$$

- - Even if the probability of error δ is extremely small, the number of bits per symbol $\frac{1}{N}H_{\partial}(X^N)$ needed to specify a long N-symbol string \mathbf{x} with vanishingly small error probability does not have to exceed $\mathbf{H} + \boldsymbol{\varepsilon}$ bits.
 - We need to have only a **tiny tolerance for error**, and the **number of bits** required **drops** significantly from $H_0(X)$ to $(H + \varepsilon)$.

Two parts of Shannon's source coding theorem

The source coding theorem has two parts!

$$\left| \frac{1}{N} H_{\partial}(X^N) - H \right| < \varepsilon$$

- $\frac{1}{N}H_{\partial}(X^N)$
- If we are yet more tolerant to compression errors? Even if δ is very close to 1, so that **errors are** made most of the time, the average number of bits per symbol needed to specify \mathbf{x} must still be at least $H \varepsilon$ bits!
- We need to have only a tiny tolerance for error, and the number of bits required drops significantly from H0(X) to $(H + \varepsilon)$.

Regardless of our specific allowance for error, the number of bits per symbol needed to specify x is H bits!

Asymptotic equipartition?

- it is important **not to think** that the elements of the typical set $T_{N\beta}$ really **do have roughly** the same probability as each other
- They are similar in probability only in the sense that their values of $\log_2 1/P(\mathbf{x})$ are within $2N\beta$ of each other.

Why the typical set?

The best choice of subset for block compression is (by definition) S_{δ} , not a typical set. So why did we bother introducing the typical set? The answer is, we can count the typical set. We know that all its elements have 'almost identical' probability (2^{-NH}) , and we know the whole set has probability almost 1, so the typical set must have roughly 2^{NH} elements. Without the help of the typical set (which is very similar to S_{δ}) it would have been hard to count how many elements there are in S_{δ} .

Information Theory

Further Reading and Summary

Q&A

Further Reading

Recommend Readings

- Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, pages 74 - 84.
- Supplemental readings:

What you should know

- raw bit content
- Ways for compressing files
- The smallest δ-sufficient subset
- The essential bit content of an ensemble
- Why to compress block of symbols
- The Typical set
- Shannon's source coding theorem. Its two parts
- H(X) viewed as a compression limit for a source

Further Reading and Summary

Q&A